О РАЗРЕШИМОСТИ ОДНОЙ КРАЕВОЙ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ ВЫСОКОГО ПОРЯДКА С ИНВОЛЮЦИЕЙ
353 70
Ключевые слова:
нелокальное уравнение, уравнение высокого порядка, инволюция, задача Дирихле, существования решения, единственность решенияАннотация
В настоящей работе для дифференциального уравнения высокого порядка с инволюцией исследованы вопросы разрешимости краевой задачи типа Дирихле. Задача решается сведением его к известной задаче Дирихле для классического уравнения. Решение задачи получено в виде ряда.
Библиографические ссылки
Sabitov K.B. Задача Дирихле для уравнений с частными производными высоких порядков // Математические заметки. – 2015. – Т. 97, № 2. – С. 262 –276.
Amanov D. Boundary-value problem for degenerate parabolic equation of high order with varying direction of time // Russian Mathematics. – 2014. – V. 58, No.12. – P.1–6. https://doi.org/10.3103/S1066369X14120019.
Amanov D. Solvability and spectral properties of the boundary value problem for degenerating higher order parabolic equation// Applied Mathematics and Computation. – 2015. – V. 268, No.1. – P. 1282 – 1291. https://doi.org /10.1016/j.amc.2015.06.131.
Кошанов Б.Д., Солдатов А.П. О разрешимости обобщенной задачи Неймана для эллиптического уравнения высокого порядка в бесконечной области // СМФН. – 2021. – Т.67,№ 3. –,С. 564 – 575. DOI: https://doi.org/10.22363/2413-3639-2021-67-3-564-575.
Солдатов А.П. Об одной краевой задаче для эллиптического уравнения высокого порядка в многосвязной области на плоскости // Владикавказский математический журнал. – 2017. – Т. 19, № 3. – С.51 – 58. DOI: 10. 23671 / VNC. 2017.3.7130.
Юсубов Ш.Ш. Нелокальная задача с интегральными условиями для трехмерного гиперболического уравнения высокого порядка // Вестник КРАУНЦ. Физ.-мат. науки. – 2020. – Т. 33, № 4. –С. 51 – 62. DOI: https://doi.org/10.26117/2079-6641-2020-33-4-51-62.
Al-Salti N., Kerbal S., Kirane M. Initial - boundary value problems for a time-fractional differential equation with involution perturbation. Mathematical Modelling of Natural Phenomena. 2019. – V. 14, No.3, - P.1 – 15. https://doi.org/10.1051/mmnp/2019014.
Andreev, A.A. Analogs of Classical Boundary Value Problems for a Second-Order Differential Equation with Deviating Argument // Differential Equations. – 2004. – V. 40. – P. 1192 – 1194. https://doi.org/10.1023/B:DIEQ.0000049836.04104.6f.
Ashyralyev A, Sarsenbi A. Well-posedness of a parabolic equation with involution // Numerical Functional Analysis and Optimization. – 2017. – V.38. – P.1295-1304. https://doi.org/10.1080/01630563.2017.1316997.
Ashyralyev A, Sarsenbi A.M. Well-posedness of an elliptic equation with involution // Electronic Journal of Differential Equations. – 2015. – V.2015, No. 284. – P.1 – 8. https://ejde.math.txstate.edu/Volumes/2015/284/ashyralyev.pdf.
Burlutskaya M.Sh, Khromov A.P. Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution // Computational Mathematics and Mathematical Physics. – 2011. – V.51. – P. 2102 – 2114. https://doi.org /10.1134 /S0965542511120086.
Cabada, A.; Tojo, F.A.F. Differential Equations with Involutions. New York: Atlantis Press, 2015. DOI:https://doi.org/10.2991/978-94-6239-121-5_1.
Karachik V.V., Sarsenbi A., Turmetov B.Kh. On solvability of the main boundary value problems for a non-local Poisson equation // Turkish journal of mathematics. – 2019. – V.43, № 3. – P. 1604 – 1625. doi:10.3906/mat-1901-71.
Yarka U., Fedushko S.,Vesely P. The Dirichlet Problem for the Perturbed Elliptic Equation. Mathematics. – 2020. – V.8, № 2108. – P. 1 – 13.doi:10.3390/math8122108
Турметов Б.Х., Карачик В.В. О задаче Дирихле для нелокального полигармонического уравнения // Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ. – 2021. Т. 13, № 2. – С.37 – 45. DOI: https://doi.org/10.14529/mmph210206.
Turmetov B.Kh., Karachik V.V., Muratbekova M.A. On a Boundary Value Problem for the Biharmonic Equation with Multiple Involutions // Mathematics. – 2021. –V.9. – P. 1 – 23. https://doi.org/10.3390/math9172020.